Evolutionarily different alphoid repeat DNA on homologous chromosomes in human and chimpanzee.

نویسندگان

  • A L Jørgensen
  • H B Laursen
  • C Jones
  • A L Bak
چکیده

Centromeric alphoid DNA in primates represents a class of evolving repeat DNA. In humans, chromosomes 13 and 21 share one subfamily of alphoid DNA while chromosomes 14 and 22 share another subfamily. We show that similar pairwise homogenizations occur in the chimpanzee (Pan troglodytes), where chromosomes 14 and 22, homologous to human chromosomes 13 and 21, share one partially homogenized alphoid DNA subfamily and chromosomes 15 and 23, homologous to human chromosomes 14 and 22, share another extensively homogenized subfamily. Such a pattern of homogenization presumably predates speciation 3-10 million years ago. However, the alphoid DNA on these human and chimpanzee chromosomes is not orthologous but originates from two evolutionarily different repeat families. It follows that dramatic sequence evolution has occurred in a concerted fashion among the chromosomes in one or both species during or after separation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular analysis of a deletion polymorphism in alpha satellite of human chromosome 17: evidence for homologous unequal crossing-over and subsequent fixation.

The human alpha satellite DNA family is organized into chromosome-specific subsets characterized by distinct higher-order repeats based on a approximately 171 basepair monomer unit. On human chromosome 17, the predominant form of alpha satellite is a 16-monomer (16-mer) higher-order repeat present in 500-1000 copies per chromosome 17. In addition, less abundant 15-monomer and 14-monomer repeats...

متن کامل

Intragene higher order repeats in neuroblastoma breakpoint family genes distinguish humans from chimpanzees.

Much attention has been devoted to identifying genomic patterns underlying the evolution of the human brain and its emergent advanced cognitive capabilities, which lie at the heart of differences distinguishing humans from chimpanzees, our closest living relatives. Here, we identify two particular intragene repeat structures of noncoding human DNA, spanning as much as a hundred kilobases, that ...

متن کامل

Four distinct alpha satellite subfamilies shared by human chromosomes 13, 14 and 21.

We describe the characterisation of four alpha satellite sequences which are found on a subset of the human acrocentric chromosomes. Direct sequence study, and analysis of somatic cell hybrids carrying specific human chromosomes indicate a unique 'higher-order structure' for each of the four sequences, suggesting that they belong to different subfamilies of alpha DNA. Under very high stringency...

متن کامل

Polymerase chain reactions with alphoid-repeat primers in combination with Alu or LINEs primers, generate chromosome-specific DNA fragments.

Y alphoid primers in combination with Alu and LINEs primers generated new DNA fragments in polymerase chain reactions (PCR) on DNA from a Y-only somatic cell hybrid but not from X-only, 3-only, or 21-only hybrids. X alphoid primers used in a similar manner generated new DNA fragments from the X-only hybrid, and 1 of the primers (X2) also generated new DNA fragments on 3-only and 21-only hybrids...

متن کامل

Nucleotide sequence heterogeneity of alpha satellite repetitive DNA: a survey of alphoid sequences from different human chromosomes.

The human alpha satellite DNA family is composed of diverse, tandemly reiterated monomer units of approximately 171 basepairs localized to the centromeric region of each chromosome. These sequences are organized in a highly chromosome-specific manner with many, if not all human chromosomes being characterized by individually distinct alphoid subsets. Here, we compare the nucleotide sequences of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 89 8  شماره 

صفحات  -

تاریخ انتشار 1992